Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 310
Filtrar
1.
J Agric Food Chem ; 72(15): 8389-8400, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38568986

RESUMO

A global demand for tea tree oil (TTO) has resulted in increased adulteration in commercial products. In this study, we use a novel enantiomeric gas chromatography mass spectrometry method for chiral analysis of key terpenes ((±)-terpinen-4-ol, (±)-α-terpineol, and (±)-limonene) and quantification of components present at >0.01% to test different methods of identifying adulterated TTO. Data from authentic Australian (n = 88) and oxidized (n = 12) TTO samples of known provenance were consistent with recommended ranges in ISO 4730:2017 and previously published enantiomeric ratios, with p-cymene identified as the major marker of TTO oxidation. The 15 ISO 4730:2017 constituents comprised between 84.5 and 89.8% of the total ion chromatogram (TIC) peak area. An additional 53 peaks were detected in all samples (7.3-11.0% of TIC peak area), while an additional 43 peaks were detected in between 0 and 99% (0.15-2.0% of the TIC peak area). Analysis of nine commercial samples demonstrated that comparison to the ISO 4730:2017 standard does not always identify adulterated TTO samples. While statistical analysis of minor components in TTO did identify two commercial samples that differed from authentic TTO, the (+)-enantiomer percentages for limonene, terpinen-4-ol, and α-terpineol provided clearer evidence that these samples were adulterated. Thus, straightforward identification of unadulterated and unoxidized TTO could be based on analysis of appropriate enantiomeric ratios and quantitation of the p-cymene percentage.


Assuntos
Monoterpenos Cicloexânicos , Cimenos , Melaleuca , Óleo de Melaleuca , Limoneno , Cromatografia Gasosa-Espectrometria de Massas/métodos , Árvores , Austrália , Terpenos/química , Chá , Melaleuca/química
2.
Biomed Pharmacother ; 173: 116389, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38461682

RESUMO

Staphylococcus aureus is one of the most common bacterial isolates found in wounds. Thus, innovative dressings, such as hydrogels, are interesting vehicles for incorporating bioactive compounds like those from Melaleuca alternifolia essential oil (MaEO). In this study, we evaluated the antimicrobial and anti-inflammatory potential of MaEO incorporated into an alginate and chitosan hydrogel for treating wounds infected by S. aureus. The hydrogel incorporated with MaEO 1% (HMa 1%) was homogeneous with a bright pale-yellow color and the characteristic smell of Melaleuca. The incorporation of MaEO 1% does not affect the stability of the hydrogel, which was stable up to 90 days of storage. The Scanning electron microscopy analysis revealed that hydrogels showed irregular surfaces and interconnected porous structures with accumulations of oil crystals distributed throughout the formulation. HMa 1% has a high moisture content (95.1%) and can absorb simulated wound fluid. Regarding the antimicrobial effects, HMa 1% reduced the growth of S. aureus ATCC 6538 in both in vitro conditions and in an ex vivo model of wounds using porcine skin. In addition, the dairy topical treatment of murine skin lesions with HMa 1% induced a significant reduction of the wound area, inflammation score, and bacterial load, as well as tissue re-epithelialization and modulation of inflammatory mediators. Therefore, hydrogel incorporated with MaEO 1% has excellent potential to be used in the pharmacotherapy of infected wounds.


Assuntos
Anti-Infecciosos , Melaleuca , Óleos Voláteis , Infecções Estafilocócicas , Óleo de Melaleuca , Suínos , Animais , Camundongos , Staphylococcus aureus , Óleos Voláteis/farmacologia , Óleos Voláteis/uso terapêutico , Óleos Voláteis/química , Melaleuca/química , Hidrogéis/farmacologia , Hidrogéis/uso terapêutico , Anti-Infecciosos/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Óleo de Melaleuca/farmacologia , Óleo de Melaleuca/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
3.
Biofouling ; 40(1): 54-63, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38353250

RESUMO

Legionella pneumophila is a Gram-negative bacterial pathogen that colonizes natural and artificial water systems and has the ability to form a biofilm. The biofilm protects L. pneumophila from various environmental factors and makes it more resistant to chlorine-based disinfectants. This study investigated the anti-bacterial properties of tea tree (Melaleuca alternifolia (Maiden and Betche) Cheel) oil and lemon eucalyptus tree (Eucalyptus citriodora Hook) essential oils (EOs) and their synergistic, additive inhibitory and anti-adhesive effects against L. pneumophila biofilm formation on polystyrene. The minimum effective concentration (MEC) for tea tree is 12.8 mg ml-1 and for lemon eucalyptus tree EO 6.4 mg ml-1. In the checkerboard assay, different combinations of these two EO show synergistic and additive anti-microbial activity. The minimum anti-adhesive concentration (MAC) for tea tree is 12.8 mg ml-1 and for lemon eucalyptus tree EO 6.4 mg ml-1. A combination of 3.2 mg ml-1 tea tree EO and 0.8 mg ml-1 lemon eucalyptus tree EO showed the strongest anti-adhesive effect against L. pneumophila on polystyrene. The tested oils and their combination showed intriguing potential to inhibit L. pneumophila biofilm formation.


Assuntos
Citrus , Eucalyptus , Legionella pneumophila , Melaleuca , Óleos Voláteis , Óleos Voláteis/farmacologia , Árvores , Poliestirenos , Biofilmes , Chá , Testes de Sensibilidade Microbiana
4.
BMC Complement Med Ther ; 24(1): 76, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317130

RESUMO

BACKGROUND: The genus Melaleuca (Myrtaceae) comprises dozens of essential oil (EO)-rich species that are appreciated worldwide for their various medicinal values. Additionally, they are renowned in traditional medicine for their antimicrobial, antifungal, and other skin-related activities. The current study investigated the chemical profile and skin-related activities of volatile constituents derived from M. subulata (Cheel) Craven (Synonym Callistemon subulatus) leaves cultivated in Egypt for the first time. METHODS: The volatile components were extracted using hydrodistillation (HD), headspace (HS), and supercritical fluid (SF). GC/MS and Kovat's retention indices were implemented to identify the volatile compounds, while the variations among the components were assessed using Principal Component Analysis and Hierarchical Cluster Analysis. The radical scavenging activity was assessed using 2,2-diphenyl-1-picrylhydrazyl (DPPH), oxygen radical absorbance capacity (ORAC) and ß-carotene assays. Moreover, the anti-aging effect was evaluated using anti-elastase, and anti-collagenase, while the antimicrobial potential was deduced from the agar diffusion and broth microdilution assays. Lastly, the molecular docking study was executed using C-docker protocol in Discovery Studio 4.5 to rationalize the binding affinity with targeted enzymes. RESULTS: The SF extraction approach offered the highest EO yield, being 0.75%. According to the GC/MS analysis, monoterpene hydrocarbons were the most abundant volatile class in the HD oil sample (54.95%), with α-pinene being the most copious component (35.17%). On the contrary, the HS and SF volatile constituents were pioneered with oxygenated monoterpenes (72.01 and 36.41%) with eucalyptol and isopulegone being the most recognized components, representing 67.75 and 23.46%, respectively. The chemometric analysis showed segregate clustering of the three extraction methods with α-pinene, eucalyptol, and isopulegone serving as the main discriminating phytomarkers. Concerning the bioactivity context, both SF and HD-EOs exhibited antioxidant effects in terms of ORAC and ß-carotene bleaching. The HD-EO displayed potent anti-tyrosinase activity, whereas the SF-EO exhibited significant anti-elastase properties. Moreover, SF-EO shows selective activity against gram-positive skin pathogens, especially S. aureus. Ultimately, molecular docking revealed binding scores for the volatile constituents; analogous to those of the docked reference drugs. CONCLUSIONS: M. subulata leaves constitute bioactive volatile components that may be indorsed as bioactive hits for managing skin aging and infection, though further in vivo studies are recommended.


Assuntos
Anti-Infecciosos , Monoterpenos Bicíclicos , Monoterpenos Cicloexânicos , Melaleuca , Myrtaceae , Óleos Voláteis , Melaleuca/química , Eucaliptol , Simulação de Acoplamento Molecular , beta Caroteno , Quimiometria , Staphylococcus aureus , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Anti-Infecciosos/farmacologia , Monoterpenos/farmacologia
5.
Drug Deliv Transl Res ; 14(5): 1239-1252, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38227165

RESUMO

Sepsis represents a complex clinical syndrome that results from a harmful host response to infection. The infections most associated with sepsis are pneumonia, intra-abdominal infection, and urinary tract infection. Tea tree oil (TTO) has shown high antibacterial activity; however, it exhibits low aqueous solubility and high volatility, which have motivated its nanoencapsulation. In this study, the performance of nanoemulsions (NE) and nanocapsules (NC) loaded with TTO was compared. These systems were prepared by spontaneous emulsification and nanoprecipitation methods, respectively. Poly-ε-caprolactone or Eudragit® RS100 were tested as polymers for NCs whereas Tween® 80 or Pluronic® F68 as surfactants in NE preparation. Pluronic® F68 and Eudragit® RS100 resulted in more homogeneous and stable nanoparticles. In accelerated stability studies at 4 and 25 °C, both colloidal suspensions (NC and NE) were kinetically stable. NCs showed to be more stable to photodegradation and less cytotoxic than NEs. After sepsis induction by the cecal ligation and puncture (CLP) model, both NE and NC reduced neutrophil infiltration into peritoneal lavage (PL) and kidneys. Moreover, the systems increased group thiols in the kidney and lung tissue and reduced bacterial growth in PL. Taken together, both systems showed to be effective against injury induced by sepsis; however, NCs should be prioritized due to advantages in terms of cytotoxicity and physicochemical stability.


Assuntos
Melaleuca , Nanocápsulas , Ácidos Polimetacrílicos , Sepse , Óleo de Melaleuca , Óleo de Melaleuca/farmacologia , Poloxâmero , Sepse/tratamento farmacológico
6.
J Cosmet Dermatol ; 23(5): 1840-1849, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38213091

RESUMO

BACKGROUND: Sleep is one of the most important factors affecting overall health. During the night, the skin repairs damage caused by daily stresses. Melatonin plays a key role in this process. Toxins are removed, and cellular repair and growth hormone production are increased. Inter alia, this also decreases signs of intrinsic aging. AIMS: The current study was intended to demonstrate the impact of a unique fraction of Melaleuca alternifolia (FMA) essential oil, on sleep and skin quality. METHODS: The effect of FMA was investigated in vitro on skin cells, evaluating its antioxidant and anti-inflammatory properties, and in an ex-vivo study on human skin biopsies treated with FMA following stress induction. In addition, two clinical studies were performed on volunteers with life-style-related sleep complaints. In one study, sleep was measured using a noncontact monitoring device (SleepScore Labs, Max). A second study was conducted to assess skin anti-aging effects. RESULTS: In vitro application of FMA reduced IL-8 and reactive oxygen species (ROS) generation in skin cells. This was confirmed ex vivo through a decrease in inflammatory markers and an increase in antioxidant enzymes after stress induction. Interestingly, FMA also upregulated melatonin-associated genes. Real-world sleep tracking revealed that FMA significantly improved sleep quality, relative to unscented control. In vivo applications also showed a reduction in signs of aging. CONCLUSION: These results provide initial data to suggest that this unique FMA delivers skin anti-aging benefits via a two-pronged mode of action, improving sleep quality, and reducing skin inflammatory and oxidative stress.


Assuntos
Antioxidantes , Melatonina , Pele , Qualidade do Sono , Humanos , Melatonina/farmacologia , Melatonina/administração & dosagem , Pele/efeitos dos fármacos , Pele/metabolismo , Feminino , Adulto , Pessoa de Meia-Idade , Antioxidantes/farmacologia , Antioxidantes/administração & dosagem , Envelhecimento da Pele/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Interleucina-8/metabolismo , Masculino , Óleo de Melaleuca/farmacologia , Óleo de Melaleuca/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Melaleuca/química , Óleos Voláteis/farmacologia , Óleos Voláteis/administração & dosagem
7.
Mol Biol Rep ; 51(1): 70, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38175288

RESUMO

BACKGROUND: The tea tree (Melaleuca alternifolia) is renowned for its production of tea tree oil, an essential oil primarily composed of terpenes extracted from its shoot. MYB transcription factors, which are one of the largest TF families, play a crucial role in regulating primary and secondary metabolite synthesis. However, knowledge of the MYB gene family in M. alternifolia is limited. METHODS AND RESULTS: Here, we conducted a comprehensive genome-wide analysis of MYB genes in M. alternifolia, referred to as MaMYBs, including phylogenetic relationships, structures, promoter regions, and GO annotations. Our findings classified 219 MaMYBs into four subfamilies: one 5R-MYB, four 3R-MYBs, sixty-one MYB-related, and the remaining 153 are all 2R-MYBs. Seven genes (MYB189, MYB146, MYB44, MYB29, MYB175, MYB162, and MYB160) were linked to terpenoid synthesis based on GO annotation. Phylogenetic analysis with Arabidopsis homologous MYB genes suggested that MYB193 and MYB163 may also be involved in terpenoid synthesis. Additionally, through correlation analysis of gene expression and metabolite content, we identified 42 MYB genes associated with metabolite content. CONCLUSION: The results provide valuable insights into the importance of MYB transcription factors in essential oil production in M. alternifolia. These findings lay the groundwork for a better understanding of the MYB regulatory network and the development of novel strategies to enhance essential oil synthesis in M. alternifolia.


Assuntos
Arabidopsis , Melaleuca , Óleos Voláteis , Genes myb , Melaleuca/genética , Filogenia , Chás Medicinais , Fatores de Transcrição/genética , Terpenos
8.
Lett Appl Microbiol ; 76(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37989849

RESUMO

Treatment of wounds is challenging due to bacterial infections, including Staphylococcus aureus and Pseudomonas aeruginosa. Using the merits of alternative antimicrobials like tea tree oil (TTO) and nanotechnology, they can be helpful in combatting bacterial infections. Solid lipid nanoparticle (SLN) and chitosan (CS) nanoparticles show great potential as carriers for enhancing the stability and therapeutic benefits of oils. The aim of this study is to compare the influence of nanocarriers in enhancing the antibacterial effects of TTO. The study evaluates the physicochemical and antibacterial properties of TTO-SLN and TTO-CS against P. aeruginosa and S. aureus. The TTO-SLN nanoparticles showed a clear round shape with the average diameter size of 477 nm, while the TTO-CS nanoparticles illustrated very homogeneous morphology with 144 nm size. The encapsulation efficiency for TTO-CS and TTO-SLN was ∼88.3% and 73.5%, respectively. Minimum inhibitory concentration against S. aureus and P. aeruginosa for TTO-CS, TTO-SLN, and pure TTO were 35 and 45 µg ml-1, 130 and 170 µg ml-1, and 380 and 410 µg ml-1, respectively. Since TTO-CS revealed an impressively higher antimicrobial effects in comparison with TTO-SLN and TTO alone, it can be considered as a nanocarrier that produces the same antimicrobial effects with lower required amounts of the active substance.


Assuntos
Anti-Infecciosos , Infecções Bacterianas , Quitosana , Melaleuca , Staphylococcus aureus Resistente à Meticilina , Nanopartículas , Óleo de Melaleuca , Staphylococcus aureus , Pseudomonas aeruginosa , Melaleuca/química , Quitosana/farmacologia , Árvores , Óleo de Melaleuca/farmacologia , Óleo de Melaleuca/química , Antibacterianos/farmacologia , Antibacterianos/química , Anti-Infecciosos/farmacologia , Nanopartículas/química , Testes de Sensibilidade Microbiana , Chá
9.
Trop Anim Health Prod ; 55(6): 381, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37884761

RESUMO

The effects of intramammary dry cow therapy based on the administration of 5% Melaleuca alternifolia tea tree essential oil (TTO) as an internal teat sealant to Murrah cows were evaluated. A longitudinal prospective and retrospective negative control study was performed using 12 buffaloes from a total of 20 Murrah buffaloes on an organic farm, with the cow used as a control for herself. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) for treatments with pure oil (TTO) and medication containing 5% TTO (O5) were determined. The buffaloes were clinically examined, and the teats were evaluated using thermography and ultrasound. Udder health was monitored during the first 100 days in milk (DIM) using milk somatic cell count (SCC) and California mastitis test (CMT). Laboratory tests against standard strains Staphylococcus aureus ATCC®25,923™, Escherichia coli ATCC®25,922™, and wild bacterial strains showed maximum MIC values of 50 µL/mL for the TTO and O5 treatments. One wild-type S. aureus strain showed no MBC. No adverse effects were observed after the intramammary application of TTO. The CMT and SCC values were similar (P > 0.05) for all observations. The medication containing 5% TTO was effective in vitro and compatible with the intramammary tissue in vivo of Murrah buffaloes. TTO was safe, not inducing inflammatory processes or other modifications of the teat detectable by thermography or ultrasound. It was able to protect buffaloes during the dry period under field conditions, demonstrating potential use as a teat sealant for organic farms.


Assuntos
Doenças dos Bovinos , Mastite Bovina , Melaleuca , Feminino , Bovinos , Animais , Antibacterianos/farmacologia , Lactação , Búfalos , Staphylococcus aureus , Estudos Prospectivos , Estudos Retrospectivos , Leite/microbiologia , Glândulas Mamárias Animais/microbiologia , Mastite Bovina/microbiologia , Contagem de Células/veterinária , Doenças dos Bovinos/tratamento farmacológico
10.
New Phytol ; 240(5): 1944-1960, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37737003

RESUMO

Leaf oil terpenes vary categorically in many plant populations, leading to discrete phenotypes of adaptive and economic significance, but for most species, a genetic explanation for the concerted fluctuation in terpene chemistry remains unresolved. To uncover the genetic architecture underlying multi-component terpene chemotypes in Melaleuca alternifolia (tea tree), a genome-wide association study was undertaken for 148 individuals representing all six recognised chemotypes. A number of single nucleotide polymorphisms in a genomic region of c. 400 kb explained large proportions of the variation in key monoterpenes of tea tree oil. The region contained a cluster of 10 monoterpene synthase genes, including four genes predicted to encode synthases for 1,8-cineole, terpinolene, and the terpinen-4-ol precursor, sabinene hydrate. Chemotype-dependent null alleles at some sites suggested structural variants within this gene cluster, providing a possible basis for linkage disequilibrium in this region. Genotyping in a separate domesticated population revealed that all alleles surrounding this gene cluster were fixed after artificial selection for a single chemotype. These observations indicate that a supergene accounts for chemotypes in M. alternifolia. A genetic model with three haplotypes, encompassing the four characterised monoterpene synthase genes, explained the six terpene chemotypes, and was consistent with available biparental cross-segregation data.


Assuntos
Melaleuca , Melaleuca/genética , Melaleuca/química , Árvores/genética , Estudo de Associação Genômica Ampla , Terpenos/química , Chá
11.
J Biomater Sci Polym Ed ; 34(17): 2438-2461, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37640030

RESUMO

Essential oil from Melaleuca alternifolia (also known as Tea tree essential oil, TTO) is used as traditional medicine and used as therapeutic in medicine, food and cosmetic sectors. However, this oil is highly unstable, volatile and prone to oxidation which limits its practical use. The objective of this study was synthesis of tea tree oil based O/W (oil/water) nanoemulsions (tea tree essential oil nanoemulsions, TNE) and evaluation of its biological potential. Physiological characterization was carried out using UV, fluorescent, and FT-IR techniques. Various biological activities such as anticancerous, antidiabetic and anti-inflammatory were also estimated. Pharmacokinetics study on TNE was carried out. Encapsulation efficiency of nanoemulsions was found to be 83%. Nanoemulsions were spherical in shape with globule size 308 nm, zeta potential -9.42 and polydispersity index was 0.31. Nanoemulsions were stable even after 50 days of storage at different temperatures. Anti-oxidant potential of TNE was conducted by various assays and IC50 were: Nitric oxide radical scavenging activity:225.1, DPPH radical scavenging activity:30.66, Iron chelating assay:38.73, and Iron reducing assay:39.36. Notable anticancer activity was observed with the percent cell viability of HeLa cells after treatment with 1, 2 and 5 µl of TNE was 82%, 41% and 24%, respectively. Antidiabetic study revealed that TNE inhibited -amylase in a dose-dependent manner, with 88% inhibition at its higher volume of 250 µl. Drug kinetic study revealed that nanoemulsions exhibited first-order model. Based on this, the possible role of M. alternifolia oil-based nanoemulsions in cosmetic, food, and pharma sectors has been discussed.


Assuntos
Melaleuca , Óleos Voláteis , Óleo de Melaleuca , Humanos , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Antioxidantes/farmacologia , Melaleuca/química , Células HeLa , Espectroscopia de Infravermelho com Transformada de Fourier , Óleo de Melaleuca/farmacologia , Óleo de Melaleuca/química , Anti-Inflamatórios/farmacologia , Chá
12.
J Ethnobiol Ethnomed ; 19(1): 29, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37434227

RESUMO

BACKGROUND: To understand how local ecological knowledge changes and adapts, here in the case of the recent introduction of plant species, we report the knowledge and perceptions of the Ndjuka (Maroon) of French Guiana concerning two tree species, Acacia mangium and niaouli (Melaleuca quinquenervia), which are categorized as "invasive alien plants" in the savannas of their territory. METHODS: To this end, semi-structured interviews were conducted between April and July 2022, using a pre-designed questionnaire, plant samples and photographs. The uses, local ecological knowledge, and representations of these species were surveyed among populations of Maroon origin in western French Guiana. All responses to closed questions collected during the field survey were compiled into an Excel spreadsheet in order to perform quantitative analyses, including the calculation of use reports (URs). RESULTS: It appears that the local populations have integrated these two plant species, which are named, used and even traded, into their knowledge systems. On the other hand, neither foreignness nor invasiveness seem to be relevant concepts in the perspective of the informants. The usefulness of these plants is the determining factor of their integration into the Ndjuka medicinal flora, thus resulting in the adaptation of their local ecological knowledge. CONCLUSION: In addition to highlighting the need for the integration of the discourse of local stakeholders into the management of "invasive alien species," this study also allows us to observe the forms of adaptation that are set in motion by the arrival of a new species, particularly within populations that are themselves the result of recent migrations. Our results furthermore indicate that such adaptations of local ecological knowledge can occur very quickly.


Assuntos
Acacia , Emigrantes e Imigrantes , Melaleuca , Humanos , Guiana Francesa , Espécies Introduzidas
13.
J Zhejiang Univ Sci B ; 24(7): 554-573, 2023 Jul 15.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-37455134

RESUMO

Over the past few decades, complementary and alternative treatments have become increasingly popular worldwide. The purported therapeutic characteristics of natural products have come under increased scrutiny both in vitro and in vivo as part of efforts to legitimize their usage. One such product is tea tree oil (TTO), a volatile essential oil primarily obtained from the native Australian plant, Melaleuca alternifolia, which has diverse traditional and industrial applications such as topical preparations for the treatment of skin infections. Its anti-inflammatory-linked immunomodulatory actions have also been reported. This systematic review focuses on the anti-inflammatory effects of TTO and its main components that have shown strong immunomodulatory potential. An extensive literature search was performed electronically for data curation on worldwide accepted scientific databases, such as Web of Science, Google Scholar, PubMed, ScienceDirect, Scopus, and esteemed publishers such as Elsevier, Springer, Frontiers, and Taylor & Francis. Considering that the majority of pharmacological studies were conducted on crude oils only, the extracted data were critically analyzed to gain further insight into the prospects of TTO being used as a neuroprotective agent by drug formulation or dietary supplement. In addition, the active constituents contributing to the activity of TTO have not been well justified, and the core mechanisms need to be unveiled especially for anti-inflammatory and immunomodulatory effects leading to neuroprotection. Therefore, this review attempts to correlate the anti-inflammatory and immunomodulatory activity of TTO with its neuroprotective mechanisms.


Assuntos
Melaleuca , Óleos Voláteis , Óleo de Melaleuca , Óleo de Melaleuca/farmacologia , Óleo de Melaleuca/uso terapêutico , Neuroproteção , Reposicionamento de Medicamentos , Doenças Neuroinflamatórias , Austrália , Anti-Inflamatórios/farmacologia
14.
Molecules ; 28(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37298932

RESUMO

Fusarium wilt of bananas caused by Fusarium oxysporum f. sp. cubense Tropical Race 4 (Foc TR4) poses the most serious threat to banana production globally. The disease has been managed using chemical fungicides, yet the control levels are still unsatisfactory. This study investigated the antifungal activities of tea tree (Melaleuca alternifolia) essential oil (TTO) and hydrosol (TTH) against Foc TR4 and their bioactive components. The potential of TTO and TTH in inhibiting the growth of Foc TR4 was evaluated in vitro using agar well diffusion and spore germination assays. Compared to the chemical fungicide, TTO effectively suppressed the mycelial growth of Foc TR4 at 69%. Both the minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of TTO and TTH were established at 0.2 µg/µL and 50% v/v, respectively, suggesting the fungicidal nature of the plant extracts. The disease control efficacies were also demonstrated by a (p ≤ 0.05) delayed Fusarium wilt symptom development in the susceptible banana plants with reduced LSI dan RDI scores from 70% to around 20-30%. A GC/MS analysis of TTO identified terpinen-4-ol, eucalyptol, and α-terpineol as the major components. In contrast, an LC/MS analysis of TTH identified different compounds, including dihydro-jasmonic acid and methyl ester. Our findings indicate the potential of tea tree extracts as natural alternatives to chemical fungicides to control Foc TR4.


Assuntos
Fungicidas Industriais , Fusarium , Melaleuca , Musa , Fusarium/genética , Perfilação da Expressão Gênica , Antifúngicos/farmacologia , Fungicidas Industriais/farmacologia , Musa/microbiologia , Chá , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
15.
Int J Biol Macromol ; 243: 125228, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37290544

RESUMO

Melaleuca alternifolia essential oil (MaEO) is a green antimicrobial agent suitable for confection eco-friendly disinfectants to substitute conventional chemical disinfectants commonly formulated with toxic substances that cause dangerous environmental impacts. In this contribution, MaEO-in-water Pickering emulsions were successfully stabilized with cellulose nanofibrils (CNFs) by a simple mixing procedure. MaEO and the emulsions presented antimicrobial activities against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Moreover, MaEO deactivated the SARS-CoV-2 virions immediately. FT-Raman and FTIR spectroscopies indicate that the CNF stabilizes the MaEO droplets in water by the dipole-induced-dipole interactions and hydrogen bonds. The factorial design of experiments (DoE) indicates that CNF content and mixing time have significant effects on preventing the MaEO droplets' coalescence during 30-day shelf life. The bacteria inhibition zone assays show that the most stable emulsions showed antimicrobial activity comparable to commercial disinfectant agents such as hypochlorite. The MaEO/water stabilized-CNF emulsion is a promissory natural disinfectant with antibacterial activity against these bacteria strains, including the capability to damage the spike proteins at the SARS-CoV-2 particle surface after 15 min of direct contact when the MaEO concentration is 30 % v/v.


Assuntos
Anti-Infecciosos , COVID-19 , Desinfetantes , Melaleuca , Óleo de Melaleuca , Celulose/química , Emulsões/química , SARS-CoV-2 , Escherichia coli , Staphylococcus aureus , Anti-Infecciosos/farmacologia , Água/química
16.
Molecules ; 28(9)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37175338

RESUMO

Tea tree oil (TTO) is a volatile essential oil obtained by distillation, mainly from the Australian native plant Melaleuca alternifolia (Maiden & Betche) Cheel (Myrtaceae). In this study, a comparative analysis of the chemical constituents of seven tea tree oils (M. alternifolia) and four other Melaleuca spp. oils (M. cajuputi, (MCa), two chemotypes of M. quinquenervia, (MNe and MNi), and M. ericifolia (MRo)) was carried out using gas chromatography-mass spectrometry (GC-MS) and high-performance thin-layer chromatography (HPTLC). Among the seven TTOs, terpinen-4-ol (37.66-44.28%), γ-terpinene (16.42-20.75%), α-terpinene (3.47-12.62%), α-terpineol (3.11-4.66%), and terpinolene (2.75-4.19%) were the most abundant compounds. On the other hand, the most abundant compounds of the other Melaleuca oils varied, such as 1,8-cineole (64.63%) in MCa oil, (E)-nerolidol (48.40%) and linalool (33.30%) in MNe oil, 1,8-cineole (52.20%) in MNi oil, and linalool (38.19%) and 1,8-cineole (27.57%) in MRo oil. HPTLC fingerprinting of Melaleuca oils enabled the discrimination of TTO oils from other Melaleuca spp. oils. Variation was observed in the profile of the Rf values among EOs. The present study shows that HPTLC is one of the best ways to identify and evaluate the quality control in authenticating TTOs, other Melaleuca EOs, or EOs from other species within the Myrtaceae.


Assuntos
Melaleuca , Myrtaceae , Óleos Voláteis , Óleo de Melaleuca , Óleos Voláteis/química , Óleo de Melaleuca/química , Melaleuca/química , Eucaliptol/análise , Cromatografia em Camada Delgada , Austrália , Terpenos/química
17.
Curr Pharm Biotechnol ; 24(14): 1836-1845, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37005551

RESUMO

OBJECTIVE: To discover a drug from natural triterpenes that has no side effects and is effective in treating Alzheimer's disease. We predict that the drug will be put on the market soon and achieve success. METHODS: The methanolic extract of M. leucodendron leaves was fractionated and subjected to different chromatographic techniques to isolate two new triterpene glycosides alongside five known compounds kaempferol 3, quercetin 4, quercetin3-O-ß-D-glucopyranoside 5, kaempferol3- O-ß-D-glucopyranoside 6 and kaempferol3-O-α-L-rhamnoside 7. The structures of compounds 1 and 2 were elucidated by spectroscopic analysis and chemical means. RESULTS: Two new triterpene glycosides, 21-O-α-L-rhamnopyranosyl-olean-12-ene-3-O-[α-Lrhamnopyranosyl (1-4) ß-D-galactopyranosyl (1-4) ß-D-glucouronopyranoside]1 and 21-O-α-Lrhamnopyranosyl- olean-12-ene-3-O-[α-L-rhamnopyranosyl (1→4) ß-D-galactopyra-nosyl (1→4) ß-D-galactopyranoside] 2, were isolated for the first time from 70% aqueous methanolic extract (AME) of M. leucodendron leaves. The inhibitory activities of the said compounds toward acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) were then assayed. Both compounds exhibited significant inhibitory activities toward the two enzymes, and evidence indicated that compound 2 was a more effective inhibitor than compound 1. CONCLUSION: Compounds 1 and 2 have a significant role in inhibiting the enzymes acetylcholinesterase and butyrylcholinesterase.


Assuntos
Melaleuca , Triterpenos , Acetilcolinesterase , Butirilcolinesterase/análise , Glicosídeos/farmacologia , Folhas de Planta/química , Extratos Vegetais/química , Triterpenos/química , Estrutura Molecular
18.
Molecules ; 28(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36838657

RESUMO

In the present investigation, the anti-biofilm potential of two essential oils (EOs), Melaleuca alternifolia Chell (Tea-Tree) (TTO) and Eucalyptus globulus Labill. (EEO) was characterized and tested "in vitro" against both mature biofilms and biofilms in the process of formation, produced by strains belonging to three main categories of antibiotic resistant bacteria (ARB): Vancomycin-resistant enterococci (VRE), methicillin-resistant Staphylococcus aureus (MRSA) and broad-spectrum ß-lactamase-producing Escherichia coli (ESBL). The study was carried out in 96-well microtiter-plates using EOs alone, in association with each other and in combination with antibiotics against both single and multi-species biofilm. The study demonstrated the ability of TTO and EEO to counteract the ARB strains in sessile form, with promising results in particular against the biofilm in formation. Mature biofilm by ESBL E. coli was the most sensitive in the results from the quantification study of viable cells performed in multi-species biofilms. Lastly, in all tests, carried out using TTO/EEO associations and EOs/antibiotic combinations, the synergistic effect which emerged from the FIC-index has been confirmed, and both the reduction of biofilm in formation, and the removal of mature structure was obtained at very low concentrations, with values from 4 to >512-fold lower than the minimum inhibitory concentration (MIC) of the single compounds.


Assuntos
Eucalyptus , Melaleuca , Staphylococcus aureus Resistente à Meticilina , Óleos Voláteis , Óleos Voláteis/química , Eucalyptus/química , Melaleuca/química , Árvores , Escherichia coli , Antagonistas de Receptores de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Antibacterianos/farmacologia , Biofilmes , Chá , Testes de Sensibilidade Microbiana
19.
Planta Med ; 89(4): 454-463, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36626923

RESUMO

Antimicrobial research into the use of Melaleuca alternifolia essential oil has demonstrated broad-spectrum activity; however, much of the research published focuses on identifying the potential of this essential oil individually, rather than in combination for an enhanced antimicrobial effect. This study aimed to determine the antimicrobial activity of four essential oil combinations, all inclusive of M. alternifolia, against nine pathogens associated with the respiratory tract. The minimum inhibitory concentration assay was used to determine the antimicrobial activity of four essential oil combinations, M. alternifolia in combination with Cupressus sempervirens, Origanum majorana, Myrtus communis, and Origanum vulgare essential oils. The interactions between essential oil combinations were analyzed using isobolograms and SynergyFinder 2.0 software to visualize the synergistic potential at varied ratios. The antimicrobial activity of the different combinations of essential oils all demonstrated the ability to produce an enhanced antimicrobial effect compared to the essential oils when investigated independently. The findings of this study determined that isobolograms provide a more in-depth analysis of an essential oil combination interaction; however, the value of that interaction should be further quantified using computational modelling such as SynergyFinder. This study further supports the need for more studies where varied ratios of essential oils are investigated for antimicrobial potential.


Assuntos
Anti-Infecciosos , Melaleuca , Óleos Voláteis , Óleos Voláteis/farmacologia , Árvores , Anti-Infecciosos/farmacologia , Chá , Testes de Sensibilidade Microbiana
20.
Food Chem ; 401: 134114, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36099820

RESUMO

This study reports first time investigation on efficacy of cajuput essential oil loaded chitosan nanoparticle (CjEO-CSNP) on shelf-life of white button mushroom (Agaricus bisporus) stored at 4±1 °C for 7-days. CjEO-CSNP was characterized through scanning electron microscopy, X-ray diffraction, and dynamic light scattering. The nanoparticles exhibited spherical shapes with average particle size 43.17-97.03 nm. The nanoencapsulation efficiency and loading capacity were ranged between 45.86 and 92.26% and 0.69-8.87%, respectively. The release study confirmed that CjEO-CSNP showed biphasic release patterns at different pH. Positive results were unveiled when the effect of CjEO-CSNP on shelf-life of mushroom was validated by analyzing the visual appearance and firmness. Further, CjEO-CSNP prevented weight loss and respiration rate, and improved the antioxidant activity of mushrooms. CjEO-CSNP also exhibited high safety profile (LD50= > 1200 mg/Kg body weight) without altering the sensory quality of coated mushrooms. Overall, CjEO-CSNP might be used as promising candidate to lengthen the shelf-life of button mushroom.


Assuntos
Agaricus , Quitosana , Melaleuca , Óleos Voláteis , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Quitosana/química , Conservação de Alimentos/métodos , Antioxidantes/farmacologia , Agaricus/química , Expectativa de Vida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...